

VIIRS Issues and Perspectives

Jim Gleason Suomi Project Scientist June 6, 2016

Suomi NPP Status

Suomi NPP Instrument Status

- CrIS, OMPS CERES; all nominal
- ATMS; known bearing degradation issue
 - Change in con-ops; revealed FSW error
 - •Reverse motor direction once-per-day
- VIIRS; Nominal
 - HAM-sync error; periodic short term (90s) loss of data
 - SEU-caused computer lock-up aka petulant mode
 - Std reset procedure (1-2 orbits lost)
 - Tungsten-oxide mirror contamination
 - Following thin-film model
 - Will meet requirements at EOL

JPSS Status

JPSS-1 Launch: January 2016

- All Instruments Complete
- All Instruments Integrated on Spacecraft
- Observatory in Environmental Testing
 - Currently in EMI/EMC testing
 - Observatory T/V in July-September 2016
- J1 VIIRS is an excellent, well characterized instrument.
 - Nine M-band waivers
 - Two DNB waivers
 - All performance data is available to interested parties

J1 VIIRS Performance Waivers

The joint NASA/NOAA Performance Waiver WG discussed and deemed acceptable the following waivers on science performance:

- Spatial resolution better than allowed by spec established after NPP
- Dynamic Range several bands saturate before spec Lmax, similar to NPP but exacerbated by somewhat higher optical throughput achieved on J1
- Near-Field Response better than NPP but worst-case contamination at end-of-life still violates spec requirements
- Crosstalk much better than NPP but still non-compliant to the specification
- Band-to-Band registration overall better than NPP, but different in details (VIIRS J1 misregistration largely in track vs. mix of scan and track on NPP)
- Emissive Band Radiometric Calibration similar to NPP, concerns on J1 mostly have to do with response uniformity and the potential for striping
- Reflective band radiometric calibration dominated by SWIR low radiance nonlinearity (new for NPP) which could impact processing approaches
- Relative Spectral Response similar to NPP, and T-SIRCUS at Raytheon
- Polarization non-compliance not seen on NPP but acceptable on J1 based on more extensive characterization testing, modeling, and model validation
- DNB Stray Light similar to NPP, mitigated by correction in ground system
- DNB non-linearity new for NPP, non-compliant at low light levels in modes baselined for edge-of-scan. Mitigation for J1 substitutes compliant modes.

JPSS-2 VIIRS – Complete
Almost ready for ambient testing
Launch July 2021 (notional)

JPSS-3 VIIRS and JPSS-4 VIIRS
Raytheon under contract
No significant performance changes planned

JPSS-3: Launch Date July 2026 (notional)

JPSS-4: Launch Date July 2031 (notional)

Ground System Updates

Level 0

New Data path for SNPP and JPSS data

EDOS network till Fall 2016

JSH in Suitland Fall 2016 – end of JPSS Program

EDOS L0 format

Level 1
NASA VIIRS L1 algorithm complete
L1A format for easier reprocessing

SDS SNPP Data Acquisition (Operational)

Level 0 NASA EDOS network

NASA EDOS format (not NOAA C3S/IDPS)

New Data path for SNPP and JPSS data till Block 2.0

SDS Data Flow in Block 2.0 SNPP and JPSS

Summary

SNPP VIIRS

Performance nominal
New L0 data path using known EDOS L0 format
NASA L1 algorithm complete

JPSS-1 VIIRS, Complete JPSS-2 VIIRS, Assembly in progress, ready for test JPSS-3,-4 VIIRS, Under contract

VIIRS data record begins in 2012 and will end beyond 2036

Opportunity for 40 year combined MODIS-VIIRS data sets

Questions?

S-NPP & JPSS-1 Mission Orbit View

(1325 LTAN/824 km orbit)

½ orbit along-track separation

S-NPP & JPSS-1 Sensor Overlap

Spacecraft Follow Different Ground Tracks Based On ½ Orbit Along-Track Separation

JPSS-1 wrt S-NPP (1/2 orbit along-track separation)

- Order of equator crossing: JPSS1; JPSS1 45 seconds later; SNPP 50:45 later (1/2 orbit is ≈50:45)
- JPSS1 and SNPP cross through center of ground track 8 paths apart.
- JPSS1 crosses ≈21 km to the "west" of the center of the ground track

Questions?

Backup

S-NPP & JPSS-1 with 5 instruments

Suomi NPP VIIRS Degradation Analysis and Prediction

Ref: Lei, et al, SPIE Proceeding, Vol 8533, paper 19 (2012) Lei, et al, IEEE Trans. Geosci. Remote Sens., Vol 53, pp 1565-1573, (2015)

Suomi NPP VIIRS Degradation Analysis and Prediction

VIIRS Spectral Response Example; M1 412 nm

Suomi NPP VIIRS

JPSS 1 VIIRS

JPSS-1 Orbit and Constellation View

- Part of JPSS satellite constellation at 824 km and 1330 LTAN, polar sunsynchronous orbit
- 16 day repeat cycle like S-NPP
- JPSS-1 leads S-NPP with a minimum of 20 min orbital separation
 - Support instrument calibration using cross reference
 - Avoid ground contact conflicts
 - Working with GSFC A-train personnel and are preparing for meetings with JPSS Flight/LV to start coordination of mission orbit insertion

Mission Orbit Constellation Concept

Current Timeframe

- Program Science was asked to review/revisit the constellation concept (December 2014 timeframe) and responded with request to evaluate ½ orbit along-track separation concept (based on Eumetsat EPS-SG concept)
- PSE coordinated study involving science/flight/ground/mission ops to assess feasibility and impacts for changing the along-track separation

½ orbit along-track separation between JPSS-1 and S-NPP in the same mission orbit plane (824 km, 1325 LTAN)

Ground Track Diagram

Blue line/swath – JPSS-1; Yellow line/swath – S-NPP;

Grey swath – coverage overlap of JPSS-1 trailing edge with S-NPP leading edge; eliminates bow-tie effect

JPSS1 50 Minutes Ahead of NPP in Same Orbit (Same LTAN = 13:25) Spacecraft Follow Different Ground Tracks

JPSS-1 Orbit Paths for 16 Days

Orbit grid for JPSS1 (ascending node paths shown) – there are 227 orbit paths for every 16-day cycle

JPSS-1 Orbit Paths

- Map shows orbit paths for slightly more than one day to see how the ground track is laid out
- Consecutive orbits track 16 paths apart

S-NPP & JPSS-1 Ground Track (1325 LTAN/824 km orbit)

Spacecraft Follow Different Ground Tracks Based On ½ Orbit Along-Track Separation

JPSS-1 wrt S-NPP (1/2 orbit along-track separation)

Note: Path numbers do not correspond to orbit numbers.